Dissipationless transport in low-density bilayer systems
نویسندگان
چکیده
In a bilayer electronic system the layer index may be viewed as the z component of an isospin- 1 / 2. An XY isospin-ordered ferromagnetic phase was observed in quantum Hall systems and is predicted to exist at zero magnetic field at low density. This phase is a superfluid for opposite currents in the two layers. At B = 0 the system is gapless but superfluidity is not destroyed by weak disorder. In the quantum Hall case, weak disorder generates a random gauge field which probably does not destroy superfluidity. Experimental signatures include Coulomb drag and collective mode measurements.
منابع مشابه
Charge metastability and hysteresis in the quantum Hall regime
We report simultaneous quasi-dc magnetotransport and high-frequency surface acoustic wave measurements on bilayer two-dimensional electron systems in GaAs. Near strong integer quantized Hall states, a strong magnetic-field-sweep hysteresis in the velocity of the acoustic waves is observed at low temperatures. This hysteresis indicates the presence of a metastable state with anomalously high con...
متن کاملExcitonic superfluid phase in Double Bilayer Graphene
Spatially indirect excitons can be created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite Boson[1, 2]. Because there is no recombination pathway such excitons are long lived making them accessible to transport studies. Moreover, the ability to independently tune both the intralayer charge density and interlayer electron-hole se...
متن کاملاثرات بس ذرهای در مایعات الکترونی ابعاد کم
This review article is about the role of electron-electron interactions in low dimensional systems and its transport properties in nano-structures. It begins with a review of the pair-distribution function theory of electron liquid systems taking into account the electron-electron interactions. We extend the theory for highly correlated system such two- and one-dimensional electron liquids. We...
متن کاملTheory of carrier transport in bilayer graphene
We develop a theory for density, disorder, and temperature-dependent electrical conductivity of bilayer graphene in the presence of long-range charged impurity scattering and short-range defect scattering, establishing that both contribute significantly to determining bilayer transport properties. We find that although strong screening properties of bilayer graphene lead to qualitative differen...
متن کاملFinite-temperature dynamical density matrix renormalization group and the Drude weight of spin-1/2 chains.
We propose an easily implemented approach to study time-dependent correlation functions of one-dimensional systems at finite-temperature T using the density matrix renormalization group. The entanglement growth inherent to any time-dependent calculation is significantly reduced if the auxiliary degrees of freedom which purify the statistical operator are time evolved with the physical Hamiltoni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2000